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ABSTRACT

Keller, Mitchel Todd, B.S., Department of Mathematics, College of Science and Math-
ematics, North Dakota State University, April 2004. Knot Theory: History and Ap-
plications with a Connection to Graph Theory. Major Professor: Dr. Jorge Alberto
Calvo.

This honors thesis introduces some fundamental ideas of knot theory in a way

that is accessible to nonmathematicians. It summarizes some of the major histori-

cal developments in the mathematical theory of knots, beginning with Thomson and

Tait and ending with some of the important results of the late 20th century. A few

important examples of ways in which knot theory can be used to model real-world

phenomena are discussed, including the importance of topology to the pharmaceu-

tical industry. It concludes by using chain complexes of based, finitely-generated

Z-modules to study the Laplacians of signed plane graphs and to extend a theorem

of Lien and Watkins [14] regarding the Goeritz equivalence of the signed Laplacians

of a signed plane graph and its dual by showing that it is possible to use only (±1)-

diagonal forms instead of the (0,±1)-diagonal forms used by Lien and Watkins.
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CHAPTER 1. INTRODUCTION

The first thing that most people think of upon hearing the word “knot” is prob-

ably a troublesome tangle in a piece of string or perhaps the contortion of shoelaces

that prevents shoes from falling off. In mathematics, such messes are not knots, how-

ever, since they have loose ends floating around. If we take the two loose ends and

glue them together, then we have what mathematicians will agree to call a knot. Of

course we really cannot define a knot as “a tangled piece of string with its ends glued

together” and hope to do any serious mathematics using this definition. First of all,

a piece of string has thickness and exists in the real world, a place mathematicians

are notorious for abhorring, so we must introduce some abstraction here. (Really, we

must; otherwise mathematicians in the United States might start arguing with those

in France over how thick the string should be and if the measurements should be in

imperial units or metric units.)

We do not want to be too abstract here, since the nonmathematical reader

should be able to read at least Chapters 2 and 3 without suffering a severe migraine.

However, there is some mathematical jargon that will be unavoidable in presenting

the concrete definition of “knot” that we desire. First of all, we need to think about

the space in which knots live. Certainly they don’t live on a straight line, since there’s

the whole issue of the glued-together ends. An important aspect of knots is, for lack

of a better word, their knottedness; that is, there are places where the string goes

over or under itself. Thus, we cannot work with knots (other than a knot that’s not

really knotted) that lie in the Cartesian plane familiar to anyone who has taken a high

school algebra class. However, a three-dimensional space akin to the one in which

we live, which mathematicians denote by R3, will work just fine for studying knots.

(Now the topologists scream and demand that we use S3 instead of R3, but today we

will just ignore them.)
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Fine, so we know where knots live, but that has not gotten us any closer to

having a definition of a knot. We have already mentioned the problem of thickness

and how allowing it could escalate into World War III, so perhaps it is best to begin

by freeing our knots of thickness. One of the first things that we learned in geometry

was that lines have no thickness, so it seems natural to put this property to use. Since

we need to have endpoints to glue together, we might try to bring a line segment such

as [0, 1] into play. (There we go with notation again. What is [0, 1]? It consists of all

the points lying between 0 and 1, including those two numbers. By all the points we

really mean all the points between them—1/2, 1/
√

2, 1/π, etc.) Perhaps a knot could

be a continuous mapping f of [0, 1] into R3 such that f(0) = f(1) and if f(x) = f(y),

but x "= y, then we have that one of x and y is 0 and the other is 1. This seems

plausible; it essentially gives us a way to trace out the knot in three-dimensional space

and does not introduce any thickness. There is a problem with this idea, however,

since it would allow us to have a “knot” with infinitely many twisted portions in it,

which fails to fit in with our intuitive idea of a knot as being a piece of string with its

ends glued together. If we sacrifice this intuitive idea in forming our abstraction, we

make it far more difficult, if not impossible, to relate our abstract model to the real

world. Therefore, we cannot use this definition. Instead, we will use the definition

given in [15].

We first must explain the notion of a closed polygonal curve in R3. Suppose that

p and q are two different points in R3. Then let [p, q] denote the honest-to-goodness

line segment between p and q. Now suppose that we have an ordered list of distinct

points (p1, p2, . . . , pn) from R3. Then the union of all of the line segments [p1, p2],

[p2, p3], . . . , [pn−1, pn], [pn, p1] is what we will call a closed polygonal curve. (The

word closed is used to indicate that we start at p1 and come back to p1 by including

[pn, p1].) Perhaps an example would be in order. Figure 1 shows two closed polygonal
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Figure 1. Closed polygonal curves
(p, q, r, s) and (p, r, q, s)

curves based on the same set of four points but in different orders. This illustrates

the fact that a single set of points can define multiple closed polygonal curves. We

might now rush to define a knot as a closed polygonal curve in R3, but Figure 1 also

points out a problem with using such a definition. In the curve (p, r, q, s), we have the

line segments [p, r] and [q, s] intersecting at a point other than our four distinguished

points. This would not fit within our abstraction of our intuitive knot, since a piece

of string cannot pass through itself. Thus, we will require a special type of closed

polygonal curve called a simple closed polygonal curve. This is a closed polygonal

curve in which each line segment intersects exactly two other line segments and does

so only at their endpoints. With this in hand, we are finally ready to give a definition

of a knot.

Definition 1.1. A knot is a simple closed polygonal curve in R3.

Seems like we went through a lot of effort to come up with this definition, but

having done things properly here has given us a taste of the worrying that we must do

(and we have omitted a great deal of the optional worrying that the biggest worriers

will do) when using mathematics to model a real-world entity. If we fail to impose

enough restrictions on the mathematical model, we can find ourselves dealing with a

model that admits objects that cannot exist in the real world. Now we can put all of

this worrying behind us and remain content that we have a solid idea of what a knot
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Figure 2. Trefoil and figure-8 knots

is. From now on, we will generally not draw our knots as simple closed polygonal

curves, but rather as smooth curves such as can be seen in Figure 2, where we show

the trefoil knot and the figure-8 knot. (This does not violate our definition, as we

can use many very small straight line segments to produce a drawing that appears

smooth.) In our figures, we will use a break in the drawing to indicate the portion of

the knot that is passing under another portion of the knot. Such a representation of

a knot will be called a projection or diagram.

A few additional bits of knot theory jargon will be useful for reading the remain-

der of this thesis. First, a link is a generalization of a knot in which there may be

multiple distinct simple closed polygonal curves, referred to as components, that link

around each other. A knot then becomes a link with one component, so sometimes we

will usually use “link” in a sense that includes knots. A knot is said to be alternating

if it has a projection in which the crossings alternate between over and under as the

knot is traced out. (The trefoil and figure-8 knots are both alternating, but the knot

pictured in Figure 3 is not.) Finally, just as with the integers, we have an idea of a

prime knot. Intuitively a knot is prime if it does not consist of two knots tied in the

same piece of string. Figure 3 shows a composite knot (i.e., one that is not prime)

consisting of two trefoils connected (or “added”) together.

From here we will proceed to explore the historical development of the mathe-

matical theory of knots. Since much of the early history of knot theory was motivated
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Figure 3. A composite knot

by applications it will be difficult to avoid any reference to applications of knot theory

in this process. However, discussion of modern applications of knot theory will be

reserved for Chapter 3, which will also include a look at ways in which graph theory

can be used to study knots. We will conclude with some original research conducted

by the author.
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CHAPTER 2. A BRIEF HISTORY OF KNOT THEORY

2.1. Early work

Human beings have long been interested in the utility of knots. Ancient peoples

used knots in ropes as a way to mark the passage of time and keep records, and

every good boy scout knows the appropriate knot to tie in any given situation. One

might expect that the mathematical theory of knots dates back into antiquity as

well, but knots are a rather new arrival on the mathematical scene. The origins of

a mathematical theory of knots can be traced back to the German mathematician

Carl Friedrich Gauß, who tried to classify closed plane curves with a finite number

of self-intersections, which he sometimes called “Tractfiguren”. (Think of them like

the knot projections in Figure 2, except with letters labeling the crossings creating

a crossing sequence in place of the broken lines indicating which strand passes over

the other.) According to Epple [7], Gauß’ reason for studying the knot-projection-

like Tractfiguren remains unclear. However, we do know that Gauß worked on his

Tractfiguren in 1825 and 1844, but only after his death were his results published. He

worked out a set of rules for what crossing sequences were admissible for Tractfiguren

with at most four crossings, but he soon discovered that his rules did not hold for

Tractfiguren with five or more crossings and was never able to write down such a list.

While Gauß may not have taken a long-term active interest in studying what

we now recognize as knots, his student Johann Benedikt Listing did. Listing’s 1847

Vorstudien zur Topologie, in which he first coined the term “topology,” included a

discussion of mathematical knots and their classification. Listing was interested in

developing an algebraic calculus of knot diagrams so that it could easily be deter-

mined when two diagrams represented the same knot (for an appropriate definition

of “same”). However, the way he couched the problem prevented him from proving

any useful results in knot theory, so Listing will remain a minor character in our tale
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here. (We should note that Listing is anything but a minor character in the overall

history of topology, however.)

The first work on knot theory outside of Germany began in Scotland in the

late 1860s as the physicist William Thomson (later Lord Kelvin) began looking for

a suitable atomic theory. In 1867, Thomson, who was inspired by Hermann von

Helmholtz’s work on vortex motion and a demonstration by Peter Guthrie Tait ex-

hibiting the properties of vortices using smoke rings, presented a paper to the Royal

Society of Edinburgh proposing that atoms were knotted vortices. He recognized that

the particular shape of a vortex was not as important as the underlying topological

structure, and felt that an understanding of such vortices would lead to a complete

understanding of matter. Despite his important role in the development of Thom-

son’s idea, Tait initially felt that Thomson was on the wrong track in trying to apply

vortex motion to develop an atomic theory. Rather, Tait felt that vortex motion’s

principal application would be in the theory of electromagnetism. Despite Tait’s ini-

tial disinterest, Thomson continued thinking about atoms as vortices, sparking the

interest of James Clerk Maxwell.

Maxwell had been doing work in electromagnetism for some time, and was

primarily interested in how the theory of knots could be applied in his work. However,

he was also open to the idea that knotted vortices could be the fundamental building

blocks of matter. He wrote to Tait and Thomson discussing some of his ideas and

discoveries. They were very interested in his ideas, particularly his novel use of

equations to represent the knots as three-dimensional curves. In that letter, he noted

that the trefoil was the simplest knot that was truly knotted that consisted of a single

strand and gave equations for the curve. He went on to recognize that a parameter in

his equations determined if the trefoil thus produced was right-handed or left-handed

(an idea which will be explained in the next chapter) and claimed (without proof)
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that there was no way to change a right-handed trefoil into a left-handed one or vice

versa.

In the fall of 1868, Maxwell began to undertake a serious study of topology. It

appears that at this point he had not yet been exposed to Listing’s Vorstudien zur

Topologie, as he proposed some of the same questions regarding knots and links as

Listing had [6, p. 333]. Specifically, Maxwell wanted to know when two projections

of a link represented the same link in 3-dimensional space. In order to answer the

question, he devised a labelling scheme for the crossing points of a link projection

and then showed that every that every link diagram must contain a region bounded

by fewer than fewer than four arcs, where he defined an arc to be a segment of the

projection from one crossing point to the next.

With this result in hand, he worked to determine all of the possibilities for such

regions. In the case of a region bounded by one arc, this was simply a twist as shown

in Figure 4, which could easily be undone without changing the link. For regions

bounded by two arcs, he found two possibilities. Namely, a region created as a strand

passed over another strand at two consecutive points or a region created as a strand

passed over and then under another. (See Figure 4.) In the first case, the top strand

can be moved so that it no longer crosses over the bottom strand without changing

the link type; the second however, could not be undone. Surprisingly, the situation

gets no more complicated with regions bounded by three arcs, where there are two

possible cases as shown in Figure 4. Maxwell explained the situation, writing “[i]n the

first case, any one curve can be moved past the intersection of the other two without

disturbing them. In the second case this cannot be done and the intersection of two

curves is a bar to the motion of the third in that direction.” [16, p. 437] Maxwell

also considered regions bounded by four or more arcs, but made little progress. In

fact, one of his claims in [16, p. 438] (that any region whose boundary was partially

8



right-handed and partially left-handed could be reduced in some way) showed that

he did not know of the existence of non-alternating knots.

Figure 4. Regions bounded by fewer than four arcs

Maxwell’s pioneering work was a major advance for the theory of knots. He did

not prove or even claim (which is surprising considering that during in Maxwell’s era,

mathematical papers often contained false claims that the authors considered “obvi-

ous” and did not bother to prove) that his observations regarding regions bounded

by three or fewer arcs were sufficient to transform any projection of a link into any

other projection. However, nearly sixty years later the German mathematician Kurt

Reidemeister would prove this very fact, and today the diagrammatic “moves” dis-

covered by Maxwell bear Reidemeister’s name. This is a prime example of how it

is almost always best to be the second mathematician to discover something, as the

first rarely gets the credit deserved.

2.2. Counting knots

While, as we have remarked earlier, P.G. Tait was initially skeptical of Thom-

son’s vortex theory of atoms, he gradually changed his mind, and by 1876 he had

set out to make a complete table of knots (up to a certain number of crossings). By

creating a table of knots, Tait hoped that he would develop a table of elements to go

with Thomson’s atomic theory. Tait’s serious investigation of knots began, like Gauß’

and Maxwell’s, with the development of a way to symbolically encode the crossings

of a knot projection. Despite his earlier correspondence with Maxwell, Tait devel-

oped his own encoding scheme, which more closely resembled the one developed by
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Gauß than that of Maxwell. Shortly after beginning his study of knots, Tait delivered

a sealed envelope to the Royal Society of Edinburgh on 16 October 1876. Despite

his numerous reports to the Royal Society regarding his succeeding investigations of

knots, the envelope remained sealed for 111 years and was opened for the first time

in 1987.

Tait’s envelope contained two conjectures that appeared implicitly in his later

work, but were never as explicitly stated as in his sealed paper of 1876. Tait seemed

to take the first conjecture, which was cryptically stated as “If the simplest is + −
+−+− then irreducible” (as quoted in [6, p. 358]), as an “obvious” theorem in later

papers. Today we would interpret Tait’s statement as meaning that an alternating

knot diagram without nugatory crossings—those that separate two nontrivial distinct

portions of the knot—cannot be manipulated to have fewer crossings. For example,

the trefoil and figure-8 knot in Figure 2 cannot be drawn with fewer crossings, as

they are both depicted as alternating knots without nugatory crossings. Despite Tait’s

belief in this conjecture, it was first rigorously proved by Murasugi in [18, 19]. Tait was

not so sure of his second conjecture, today best known as Tait’s flyping conjecture,

which is usually stated (as in [11]) as “any two reduced alternating diagrams of a

given knot are related via a sequence of flypes,” diagrammatic moves such as the one

depicted in Figure 5. (We should note that Tait applied the name “twist” to what

modern knot theorists call a “flype” and reserved the term “flype” for another move.)

Tait’s flyping conjecture remained an important open problem in knot theory until

Menasco and Thistlethwaite proved it in 1993 (see [17]).

In the course of his efforts to tabulate knots, Tait naturally became interested

in knot invariants, which are properties of knots that do not depend on a particular

projection of the knot. As an example, consider the (minimal) crossing number,

which is the smallest number of crossings that any projection of a particular knot
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Figure 5. A flype

can contain. While Tait knew of the crossing number, he did not feel that it was

the most important invariant to consider. Instead, he tried to establish an invariant

that he wanted to call “beknottedness”. Today, we cannot give a proper definition of

what Tait meant by beknottedness, since he never settled on a definition himself. He

did develop ideas that looked promising. However, they only worked for alternating

diagrams without nugatory crossings (so-called “reduced diagrams”) and the fact that

they were invariants of reduced alternating diagrams was not established until Tait’s

flyping conjecture was proved. The one major positive result that came out of Tait’s

initial work on knot enumeration was the establishment of the existence of knots that

could be deformed from right-handed to left-handed without changing the structure

of the knot. He called these knots amphicheiral, a term that survives to this day

(coexisting with the term achiral), and recognized that the figure-8 was amphicheiral.

The idea of chirality is important in modern applications of knot theory, and will be

discussed in more detail in the next chapter.

Epple reports in [6] that Tait gave up the enumeration of knots for about two

weeks in 1877, citing the realization that there were in fact far fewer distinct knots

than he was prepared to find. He decided that the effort required to complete an

enumeration was becoming far too difficult and that the work required would be

more combinatorial in nature than he wanted. However, Tait soon read some of
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Listing’s early work on knots and thought that he could make use of Listing’s “type-

symbol” (as Tait called it), which emphasized the regions of a knot projection over

the crossings. This again gave Tait hope of completing an enumeration of knots that

would be sufficient for the needs of chemists and physicists. He worked things out to

the point of giving a table of knots with crossing number seven. However, he believed

that the complexity of the knots he was producing would prevent them from all being

stable enough as vortices to represent atoms, meaning that a tabulation of knots with

higher crossing numbers would be required. Such a tabulation would require either

more efficient methods or a mechanized means of determining if two knot diagrams

were the same, an idea that would not be realized for over 100 years.

Between 1877 and 1883, Tait did little work in knot theory. However, he gave

an address on topology to the Edinburgh Mathematical Society in late 1883 in which

he mentioned the problem of enumerating knots and how it was believed to be “a

mere question of skilled labour” (quoted in [6, p. 366]). Tait received a response to his

pseudo-advertisement for someone to assist with knot enumeration from the Reverend

Thomas Penyngton Kirkman, Rector of Croft, Lancashire, who had spent a significant

portion of the previous 30 years considering combinatorial problems involving graphs

and hypergraphs (e.g., Kirkman’s schoolgirl problem involving how many ways there

are for 15 schoolgirls to take daily walks in rows of three so that each girl walks in the

same row with each other girl exactly once). Kirkman viewed the knot enumeration

problem as a problem of enumerating particular 4-regular planar graphs that could be

projections of alternating knots or links and set to work on the problem. However, he

and Tait soon got into arguments over whether the enumeration of knot projections

was the right way to approach the problem. Kirkman, being a true combinatorialist

and not a topologist, felt that twisting moves were not of interest and equivalences

via such operations should not be considered.
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Kirkman sent his first paper to Tait in May 1884, in which he had enumerated

all knot projections up to 10 crossings. Tait then set about doing the work that Kirk-

man didn’t want to do and determined which alternating projections in Kirkman’s

paper represented the same knot. Their work was combined and presented to the

Royal Society of Edinburgh very shortly thereafter. While Tait was not completely

mathematically satisfied with the tables in that he had no proof of the inequivalence

of each of the knots (lending support to the view that he did not take his flyping

conjecture to be true), he was satisfied that there were now enough knots known to

provide a “periodic table” for the vortex theory of atoms. (Kirkman did not subscribe

to the vortex theory of Tait and Thomson, which may help explain his lack of interest

in the topological equivalence of knot projections.)

As Tait prepared to publish the tables prepared through his work on Kirkman’s

knot projections, he received an enumeration of knots up to 10 crossings from Charles

N. Little, a mathematics Ph.D. student of H.A. Newton at Yale University. (His knot

tabulation served as his doctoral dissertation, entitled On Knots, with a Census for

Order 10, which earned him his doctorate in 1885.) Comparing his list with Little’s,

Tait found one duplication in his list and a duplication and omission in Little’s. After

correcting his errors, he sent the paper to press. Before publishing the table up to 10

crossings, Tait had received a list of 1581 knot projections of 11-crossing knots from

Kirkman, but he decided that the work involved in determining the equivalences of

those diagrams was too great and officially retired from knot tabulation in 1885.

However, he did suggest that Little make an investigation of the 11-crossing knots.

Little did that and more, eventually taking on the much more difficult problem of

enumerating non-alternating knots, which only exist for crossing numbers greater than

seven. (The problem is so difficult that Tait initially did not believe that such knots

existed, and it took until 1930 to rigorously prove that a non-alternating knot exists.
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Ironically, there are far more non-alternating knots than alternating knots.) Despite

lacking any useful invariants to distinguish non-alternating knots, Little sent a table

to Tait in 1899 for communication to the Royal Society that purported to contain a

complete table of the 43 distinct non-alternating knots with crossing number 10. The

tables of alternating knots made by Tait and Little have withstood the test of time

and are now known to be complete and without duplication, truly a remarkable feat.

It is also quite surprising that Little’s list of non-alternating knots contained only one

duplication, which was not identified until 1974!

As time went on, Thomson had become increasingly skeptical of the vortex

theory of atoms, and thus Tait’s retirement from knot tabulation was the death knell

for the theory. Knot theory was just beginning to come into its own as an area

of mathematical study with the development of new topological tools that would

allow questions about knots and links to be resolved by rigorous proofs. Without

these tools, knot enumeration came to a virtual standstill for many decades, the only

exception being Mary Gertrude Haseman’s 1917 doctoral dissertation at Bryn Mawr

College, which was entitled On knots: with a census of the amphicheirals with twelve

crossings, and her paper on 14-crossing amphicheirals that appeared the Transactions

of the Royal Society of Edinburgh. According to the Mathematics Genealogy Project

Haseman studied under Charlotte Angas Scott and James Ryals Conner. Scott was

educated at the University of Cambridge in the United Kingdom, and Conner was a

student of Frank Morely, who also earned his doctorate from Cambridge, so Haseman

would have had exposure to the Scottish tabulating tradition through the influence

of her advisors. However, she did not make any use of the new topological techniques

that had been developed since Tait gave up tabulation.

After sufficient topological invariants had been developed to rigorously show

that the knots in the tables were truly different and not just different projections
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related by extremely complicated sequences of moves, mathematicians again became

interested in tabulating knots. In the 1960s, John H. Conway developed yet another

notation for encoding knots and links, and this scheme allowed him to enumerate

all links up to 10 crossings. (Without detecting the duplication in Little’s list of

10-crossing alternating knots.) He also attempted a tabulation of prime knots up to

11 crossings. According to [11], Conway detected 11 omissions and one duplication in

Little’s list of 11-crossing alternating knots, but his own list of nonalternating knots

had four omissions which were not detected until the late 1970s by Caudron. Hand

tabulation came to an end at that time after collaborative work by Bonahon and

Siebenmann and independent work by Perko completed the tabulation of 11-crossing

knots.

Dowker and Thistlethwaite were the first to computerize knot enumeration.

Their work in the early 1980s brought the table of knots up to 13 crossings. Work

halted again until the early 1990s when a group of high-school students won time

on a Cray supercomputer. They recruited Hoste to help them to enumerate all

alternating knots through 14 crossings. In [11], Hoste, Thistlethwaite, and Weeks

discuss the techniques they used to complete the tabulation through 16 crossings,

finding 1, 701, 936 distinct prime knots. (Their work had a built-in check, as Hoste

and Weeks worked together using hyperbolic invariants and Thistlethwaite worked

independently using absolutely no hyperbolic invariants.) The computerization of

the problem has made knot enumeration considerably easier, but the rapid growth in

the number of knots is astonishing. For example, Hoste reports in [10] that a July

2003 tabulation of all prime, alternating knots through 22 crossings performed by

S. Rankin, J. Schermann, and O. Smith found 6,217,553,258 knots! That’s over six

thousand times as many alternating knots with between 17 and 22 crossings, inclusive,

as there are alternating and nonalternating knots with at most 16 crossings.
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2.3. Non-enumerative developments

Of course, enumerative knot theory is just one part of the field. The development

of topology and knot theory over the past one hundred years has created far too many

significant ideas to be discussed in this thesis. However, we will attempt to discuss

some of the major advances alluded to earlier and that have an impact on applications

of knot theory, which will be discussed in the following chapter.

Poincaré’s development of the fundamental group was a significant advance in

the study of topology, as it created a way for the more-established tools of abstract

algebra to be used by those studying the young field of topology. The first use of

the fundamental group to study the complement of a knot (meaning what is left of

a space after deleting the knot) occurred in 1905, when the Austrian mathematician

Wilhelm Wirtinger, whose work was actually motivated by the study of algebraic

functions of a single complex variable, showed rigorously for the first time that the

trefoil knot was really knotted. This advance, which was made by showing that the

fundamental group of the trefoil is the symmetric group on three elements, confirmed

that Tait, Kirkman, and Little had not wasted their time creating tables of knots.

Soon Wirtinger realized that his method of showing that the trefoil was knotted could

be easily generalized to construct the fundamental group of an arbitrary link. This

presentation of the fundamental group is now known as the Wirtinger presentation.

Max Dehn, a German mathematician who studied under Hilbert, became inter-

ested in the theory of knots as he worked to prove the Poincaré conjecture. Of course,

Dehn did not prove the Poincaré conjecture, but he did develop another algorithm

(distinct from Wirtinger’s) for constructing the fundamental group of the comple-

ment of a link. Using this, Dehn showed (modulo a flaw in the proof of a lemma that

was later resolved) that a knot is nontrivial if and only if its fundamental group is

nonabelian. He went on to show that a trefoil knot and its mirror image (formed by
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changing all of the overcrossings to undercrossings and vice versa) are topologically

distinct, confirming what Maxwell had claimed nearly fifty years earlier. The work

of Dehn and his colleagues came to a halt with the outbreak of World War I, and it

would not be until after the war that any significant work in knot theory resumed.

In the 1920s, James W. Alexander at Princeton and Kurt Reidemeister in Vi-

enna took up the study of knots. Unlike Wirtinger and Dehn, whose interest in knots

was secondary to solving other problems in which they were interested, Alexander and

Reidemeister actually were interested in studying the properties of knots themselves.

Taking completely different approaches (Alexander via homology groups and Reide-

meister via fundamental groups) they arrived at the same knot invariants. Alexander

later went on to develop a polynomial invariant of knots (the Alexander polynomial),

and Reidemeister showed that all projections of a link were related by a sequence of

the three moves shown in Figure 6. (Note the similarities with Maxwell’s observa-

tions discussed earlier.) Again the outbreak of war disrupted the study of knots, as

Reidemeister lost his professorship in Königsberg in 1933 for being “politically unre-

liable” [7]. The Nazis also disrupted collaborations by other German mathematicians

as they fired Jewish mathematicians and moved others around to fill their positions.

Alexander and others not in German-controlled areas went to work on war-related

problems and left knot theory behind, at least temporarily.

After the war, Princeton again became a center for knot-theoretical research

in the United States, as Reidemeister and others came to stay at the Institute for

Advanced Study. (Reidemeister would not re-establish a group of students interested

in knot theory in Germany until he took a position in Göttingen in 1955.) The leader

of post-war knot theory in the United States was Ralph H. Fox at Princeton. Fox

felt that the classical definitions of knots (such as the one given in chapter 1) caused

knot theory to be too disconnected from the rest of topology. He proposed to replace
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Figure 6. Reidemeister moves

the polygonal curves by an appropriate topologically-defined set of curves and that

R3 should be replaced by other compact 3-manifolds. Fox essentially succeeded in

reshaping the foundations of knot theory, providing greater access to the tools of

topology for those studying knots. Thus, his work led to a number of new geometric

knot invariants.

In the 1970s, J.H. Conway was doing more than simply tabulating knots as

discussed in the previous section. He devised a new way to calculate the Alexander

polynomial using an algorithm on knot diagrams. In fact, his work actually led to a

refinement of the Alexander polynomial that is often called the Conway polynomial. A

major breakthrough in knot theory occurred in 1984 when Vaughan Jones developed

a new polynomial invariant of knots (the Jones polynomial) as he conducted research

on von Neumann algebras. The Jones polynomial was a significant improvement over
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the earlier polynomial invariants as it was able to distinguish many knots from their

mirror images. In 1990, Jones’ work earned him a Fields medal, arguably the most

prestigious award for mathematical research.

We could write pages about the new polynomial invariants that have been de-

veloped since 1984 alone, but then our story would require far more of a mathematical

background than has been required to this point. Furthermore, not enough time has

passed to reflect upon which developments will have seriously lasting significance in

order to determine what is most important. Thus, we will leave the history of knot

theory here and will proceed to consider some interesting applications of knot theory

to other fields.
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CHAPTER 3. KNOT THEORY IN THE REAL WORLD

Pure mathematicians often take pride in doing work that is of purely theoreti-

cal importance, and this author will readily admit to often appreciating a beautiful

mathematical result as just that without any thought as to practical applications of

the idea. Sometimes, however, the real-world applications of a mathematical result

jump out and smack a mathematician alongside the head so hard that they cannot

be ignored. Knot theory is one area of what is traditionally considered pure math-

ematics in which such occurrences are fairly common. In the previous chapter, we

saw how the early development of knot theory was motivated almost entirely by the

idea of understanding the basic building blocks of matter, and we mentioned how the

topic of amphicheiral knots kept appearing without any real discussion of what an

amphicheiral knot actually is. The anticipated moment is almost here, but first we’re

going to take a bit of a detour to discuss a way to use graph theory to look at knots

and links.

3.1. Using graphs to study knots

In the previous chapter we saw how knot theory is an area of mathematics that

is best described as topological due to the importance of equivalence of knots under

deformations; however, it also has a strong combinatorial aspect when considering

the idea of counting knots and constructing tables of knots. Thus it is not surprising

that combinatorialists have developed techniques to look at knots using tools to which

they are more accustomed. Furthermore, theorems regarding knots have been used

to prove theorems about graphs, such as the theorem of Lien and Watkins [14] that

we extend in the next chapter. This section will serve as a brief introduction to the

idea of turning knots into graphs and vice versa and will discuss how Reidemeister

moves are then done on these graphs.

Formally, a graph G = (V, E) is a pair of (multi)sets. We say that V is the
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set of vertices and E is the (multi)set of edges, consisting of one- and two-element

subsets of V . Informally, a graph is a set of points (vertices) and line segments (edges)

connecting those points. Graph theorists can never seem to agree if more than edge

should be permitted between two vertices or if an edge should be permitted to go from

a vertex back to itself, but we will need those features in our graphs, so the formal

definition given above permits them. Such graphs are sometimes called multigraphs

or pseudographs, but we will stick with the term graph here. Figure 7 shows some

examples of graphs.

G

K3 K4 1

K3,3K5
2

G

Figure 7. A few graphs

One of the interesting (and topological) properties of a graph is planarity. We

say that a graph is planar if it can be embedded in the plane with edges meeting only

at vertices. Of the graphs above, the one labelled K3 is planar, as is K4. A hasty

look at G1 might suggest that G1 is not planar, as two of its edges cross in the middle

of the square but there is no vertex there. However, G1 is isomorphic to K4, as they

both contain precisely four vertices and all the possible edges between them. Thus,

G1 is planar, although the way it is drawn is not a planar embedding. The graphs

K5 and K3,3 are not planar. In fact, they are the simplest nonplanar graphs and it is

a well-known theorem attributed to Kuratowski but first proved by Pontryagin that
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every nonplanar graph contains a graph equivalent one of these graphs, for a suitable

definition of “equivalent”. In this thesis, we will be concerned entirely with planar

graphs, as we will establish a one-to-one correspondence between planar graphs (with

a sign of + or − assigned to each edge) and knot diagrams. First, however, we will

need to discuss checkerboard colorings of knot diagrams.

Given a knot diagram, it divides the plane into a number of regions. We begin

by coloring the outer, unbounded region white. We then cross over any strand of the

knot diagram and color the region into which we entered black. Next we cross into a

bordering region and color it white. The process of crossing strands and alternating

colors continues until all the regions have been colored black or white. (While it

might not seem likely at first, this process really does create a well-defined coloring.)

Figure 8 shows a checkerboard coloring of a trefoil knot.

Figure 8. Checker-
board coloring

Once we have created a checkerboard coloring, we are set to construct a graph,

which we will call the medial graph of the knot diagram. To do this, we first place

a vertex in each of the black regions. (Our choice of the black regions is arbitrary.

The graph constructed by using the white regions is just as useful, and in fact is the

planar dual of the medial graph we will construct.) Next, we must add edges to our

graph. We add an edge between two vertices if and only if there is a crossing that

“connects” the regions to which the vertices correspond. Finally, we assign each edge
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a sign based on the slope of the overstrand encountered as one “walks along” the

edge. (Figure 9 gives examples of the two types of crossings.) Medial graphs for a

trefoil and figure-8 knot are shown in Figure 10. The fact that the signs are all the

same in the medial graphs for these knots is not a fluke. Rather, it is due to the

fact that the knots are drawn as alternating knots, so all the crossings have the same

type.

Positive Negative

Figure 9. Crossings

Figure 10. Medial graphs of the trefoil and
figure-8 knots

In order to determine if two medial graphs represent the same knot, we need to

understand how to perform Reidemeister moves on the graphs. This is as simple as

drawing the graph corresponding to each move in Figure 6. Of course, the coloring

with which we are working influences how the move affects the graph, so the type I

and II moves have two graphical possibilities as shown in Figure 11. For the type III

move, the dual starting position to the one depicted below is essentially the same (up

to signs) as the ending position, so a single drawing conveys the needed information.
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Figure 11. Reidemeister moves on medial
graphs

Before leaving the world of abstraction for some discussion of concrete appli-

cations, we should make a few observations. First, our construction of the medial

graph guarantees that it will always result in planar graph. (More specifically, we

get a specific planar embedding of a graph.) Second, we can reverse our process of

constructing the medial graph by drawing appropriate crossings on a signed plane

graph and then adding strands to create the regions the vertices represent. Thus,

there is a one-to-one correspondence between link diagrams and signed plane graphs.

3.2. Chirality

The much-anticipated moment has arrived for us to discuss the importance of

chirality. The root of the word chiral is the Greek word cheir meaning “hand”, and

handedness is what chirality is all about. Human beings know that our left hands

are physically different from our right hands. No amount of twisting or turning will
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make one look like the other to the point that they cannot be distinguished, even by

an outside observer who cannot see the body to which they are attached. (Of course,

we are not claiming that we can always remember which to call “left” and which to

call “right”. That is an entirely different issue.) There is, however, one way in which

we can look at a right hand and think that it is a left hand—by looking at it in the

mirror. Thus, we say that our hands are mirror images of each other.

Much like hands, there is a way to consider the mirror image of a knot projection,

which is formed by changing all the crossings in the projection so that the overstrand

becomes the understrand and vice versa. (In terms of a graph-theoretic approach,

we change the sign of every edge to its opposite.) As an example, Figure 12 shows

a trefoil knot and its mirror image. Looking at these two knots, it seems reasonable

to say that they are different knots, as J.C. Maxwell claimed roughly 140 years ago.

However, it is far from trivial to prove that there is no deformation transforming one

to the other, since such a proof requires that it be shown that no one can perform

such a deformation, not just that one mathematician can find no way to do it. (A

proof using one of the many knot polynomials developed in the last twenty years is not

all that difficult, but those polynomials are very sophisticated tools in themselves.)

Knots, such as the trefoil, that can be distinguished from their mirror images are called

chiral. Those that are (topologically) indistinguishable from their mirror images (if

such knots even exist) are called achiral or amphicheiral.

Figure 12. Left- and right-handed trefoils
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In keeping with our handedness analogy, we can in fact designate one trefoil as

left-handed and the other as right-handed in a straightforward manner. To do this, we

need to orient the knots, in effect providing a direction in which we trace out the knot.

(The arrows on the knot projections in Figure 12 provide an orientation for each.)

The trefoil on the right in Figure 12 is a right-handed trefoil because if we look at any

crossing and think of grasping the overstrand with our thumb pointing in the direction

of the orientation, our fingers curl and point in the direction of the orientation of the

understrand. For the other trefoil, we note that our fingers curl the opposite direction

of the orientation when using our right hand, but doing the same thing with our left

hand again leads to consistency with the knot’s orientation. We should note that if

we reverse the orientation of a knot we will still reach the same conclusion as to if

it is right-handed or left-handed, which is important. Otherwise, we’d have another

circumstance in which World War III might arise as mathematicians fought over which

way to orient a knot is the “correct” way.

One might hastily claim that all knots are distinct from their mirror images.

Of course, it is foolish to make conjectures after considering only one example, so

let’s move up one level in complexity and consider the figure-8 knot in Figure 13.

At first glance, we have no reason to expect that this knot can be deformed into its

mirror image. However, we can in fact make such a deformation. One sequence of

Reidemeister moves affecting such a transformation is shown in Figure 14. (Here we

show only the graphs at each stage, but our discussion in the previous section explains

how to reconstruct knot projections at each stage if desired.)

Now we know that there are chiral knots and achiral knots, but so far we have

yet to say anything that might indicate that such distinctions matter to anyone other

than a pure mathematician. After all, this chapter is supposed to be about real-world

applications. Although it might not seem like it from the discussion above, chirality
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Figure 13. Figure-8 knot

! !

!

+

+ +
+

+

+ +

! !

!

!

!

+

+

+
!

+

!

!

!

!

!

+
+

+

+

!

+
+

+

+ !

!

!

!

Figure 14. A demonstration of the achirality of the figure-8 knot

is an issue of great interest to many nonmathematicians. (No, not just in that it is

good to have a right hand and a left hand that are distinct.) Knots appear in nature

more often than one might think, and the chirality (or lack thereof) of such knots

is often important. One area in which such questions often arise is chemistry, where

the difference between a right-handed and a left-handed molecule can coincide with

the difference between helpful and harmful. More discussion of molecules that are

actually knotted will follow in a later section, but for now we will spend a moment

on the consequences of chirality of unknotted molecules, as it will present a simpler
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arena for discussion.

When considering unknotted molecules, our method of distinguishing between

right- and left-handedness will not work. However, chemists do have a means for

determining if a chiral molecule is right-handed or left-handed and call two chiral

molecules that are mirror images of one another enantiomers. To determine if an

enantiomer is right- or left-handed, they pass a beam of polarized light through a

sample. If the sample consists of molecules that all have the same chirality, the light

will be bent to the right or left. If the light bends to the left, the enantiomer is

called levo, usually abbreviated by the letter L. Conversely, if the light bends to the

right, we call the enantiomer dextro, denoted by the letter D. A mixture containing

both enantiomers of a chiral molecule is called a racemic mixture, while a compound

containing only one enantiomer is said to be optically pure.

As a good example of a chiral molecule, consider limonene, which has chemical

formula C10H16. Both enantiomers of limonene have a citrus scent. However, the D-

limonene molecule has a pleasing orange scent, while L-Limonene has a lemon scent

that is usually described as harsh, piney, and turpentine-like. Based on the differences

between limonene enantiomers, we can reasonably assume that molecular chirality is

of interest to the makers of household cleaning products. If that were the only way in

molecular chirality were interesting, however, there is no way that molecular topology

would have become a course at North Dakota State University or Erica Flapan would

have written [8]. The real importance of molecular chirality comes in not in making

household cleaners smell good but rather in ensuring that pharmaceuticals are safe

for human use.

A prime example of the problems that can arise when patients are given a

racemic mixture is the drug Thalidomide, which was prescribed to pregnant women

in the 1960s as a treatment for morning sickness. The drug did successfully reduce
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problems of morning sickness. However, it also caused horrible birth defects. As it

turns out, the left-handed enantiomer was making the expectant mother feel better,

while the right-handed enantiomer was causing severe damage to the fetus. In the

years since the Thalidomide disaster, pharmaceutical companies have had to consider

the chirality of their drug molecules to ensure that the undesirable side effects of

one enantiomer do not outweigh the benefits of the other. (Of course, in most cases

one enantiomer passes harmlessly through the body while the other provides positive

treatment.)

The articles [20] and [21] provide an interesting look at how drug chirality has

become big business in recent years. Rouhi reports that in 2001, 36% of the worldwide

sales of formulated pharmaceutical products belonged to single-enantiomer drugs,

up from 34% in 2000 and 32% in 1999. Developing new chiral drugs has been an

important part of this growth, but it is also attributable to the use of chirality to

extend the profitable life of existing drugs. As an example, consider the antiulcer

drug Prilosec, produced and marketed by AstraZeneca. Prilosec was approved by

the Food and Drug Administration (FDA) in 1995 as a racemic mixture. However,

only the levo enantiomer is pharmacologically active, so AstraZeneca later filed for a

patent on the levo molecule alone, providing extended protection for when the patent

on the racemic mixture expired in 2002. They then introduced their “new” antiulcer

drug Nexium, which was no different from Prilosec in function except that the optic

purity of Nexium allows half the dose to provide the same effect. Another means of

extending the commercial life of a pharmaceutical that some companies have used is

to combine an older drug, such as montelukast, with a newer drug, such as laratidine.

Both are used in fighting asthma, but montelukast’s patent expires after laratidine’s,

providing a longer period of exclusivity to the manufacturers.

One company has actually made its name on drug chirality. Sepracor has been
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examining other companies’ drugs for years and testing to determine if both enan-

tiomers are pharmacologically active or if an optically pure drug would be more

effective. In the latter case, they file a patent on the effective enantiomer and of-

fer the drug’s original manufacturer a license for that molecule. This was the case

with Eli Lilly’s Prozac, in which only the L-enantiomer is active. However, not all

drug companies are receptive to such offers, so then Sepracor proceeds to get FDA

approval on its own and licenses another company to produce and market the drug.

For example, Schering Corporation, which manufactures the racemic asthma drug

albuterol marketed as Preventil, was not interested in Sepracor’s offer for a license

on optically pure levalbuterol, which they had determined to be more effective and

lacking in the aggravating side-effects of racemic albuterol. Sepracor took the drug

to market as Xopenex in 1999 for adults and 2002 for children, and it has been a big

success.

3.3. Knot strength

Now that we’ve seen that topology is an important tool for chemists, we turn

to a brief look at real physical knots and their strength. In [4], the authors used

high-speed photography to study the strength of knots tied in monofilament fishing

lines and cooked spaghetti. Here we will provide a brief summary of their results.

The authors began by looking at overhand and figure-8 knots tied in fishing line.

(The overhand knot is the open-ended version of the trefoil knot.) To compare their

strength, they tied an overhand knot and a figure-8 knot on the same strand of fishing

line and pulled evenly on both ends. They found that the overhand knot always broke

before the figure-8 knot. They conducted further experiments that showed that the

overhand knot is weaker than any other knot up to 7 crossings. They were unable to

create a complete ranking of all the knots tested, however, as the knots with more

than four crossings failed to consistently pull into a single tight configuration as the
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overhand and figure-8 knots did. After concluding that overhand knots break more

easily than figure-8 knots, the next natural question was to determine where a knot

was most likely to break. This is where the spaghetti enters the picture, as the fishing

line was so thin that it would completely break between exposures of the high-speed

camera, necessitating a thicker “rope.”

One immediate difference that was encountered when using spaghetti instead

of monofilament is that the overhand knot was no longer always the first to break.

However, the authors attributed that to the likelihood of imperfections in the struc-

ture of the noodle, as the overhand knot continued to break first in about 70 percent

of cases. The theoretical model of knotted string that the authors were investigating

predicted that the spaghetti would break at the point of highest curvature. (The

easiest way to picture the curvature of a smooth curve at a point is by trying to fit

a circle into the curve so that it is tangent at that point. The curvature is then the

reciprocal of the radius of the circle. Thus, the more the curve curves, the smaller the

circle is that can be fit, and the larger the curvature is.) They speculated that such

a point would be the breaking point as the outer surface of the “string” would be

stretched the most at that point and the inner surface would be greatly compressed.

When actually examining where the breakage occurred, however, they found that the

spaghetti broke at the entrance of the knot but at the outside instead of inside where

the point of highest curvature was located. (It is worth noting that the real breaking

point was a point of high curvature, just not the maximizing point.) A reasonable

explanation for this difference between the theoretical model and the physical reality

is the friction involved in the tightening of the knot. The authors speculate that at

the breaking point the friction has become so great that the spaghetti is no longer

able to move against itself, and thus breaks.
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3.4. Other applications

We have of course only touched the surface of how knot theory is applicable in

the “real world.” Biologists are also interested in knot theory for its applicability to

the study of DNA, which can be examined by considering the knot structures into

which it is twisted. Living creatures have also been seen turning themselves into

knots, as is the case with the hagfish, which knots itself up for hygenic purposes,

defensive reasons, and to get food. The interested reader should refer to [3] as a

starting point for further examples of physical knots.
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CHAPTER 4. SIGNED GRAPH LAPLACIANS

Algebraic invariants derived from knot diagrams and medial diagrams have long

been studied. Most of these studies have focused on the abstract graph theoretic prop-

erties while ignoring the plane embedding. However, Whitney showed in [23] that only

3-connected graphs have unique embeddings in the plane, giving some importance to

the particular embedding. In this chapter, we wish to study invariants which incor-

porate information from the plane embedding. We do this by constructing a chain

complex corresponding to a signed plane graph and then examining the properties of

its Laplacians.

4.1. Graphs and Chain Complexes

In this chapter we permit graphs with multiple edges between a single pair of

vertices but disallow self-loops and vertices of degree one (i.e., vertices adjacent to

only one other vertex). We make the second restriction to prevent small technical

problems when dealing with the dual graph, since vertices of degree one create loops

in the dual. See [22] for definitions and concepts from graph theory.

Fix an orientation for S2 and let G ⊂ S2 be a signed plane graph. Let G have

ordered vertex set V = {v1, v2, . . . , vn}, ordered edge set E = {e1, e2, . . . , em}, and

ordered face set F = {f1, f2, . . . , fr}. (By the Euler characteristic, we have that

r = 2 − n + m.) The chosen orientation of S2 induces an orientation on F , but we

choose an arbitrary orientation for each edge in E, making G a signed plane digraph.

When considering the oriented edges, we will refer to them as "ei.

Definition 4.1. Given an S2 embedding of a signed digraph G ⊂ S2, we can construct

the chain complex corresponding to G (denoted C[G]), a complex of free Z-modules

of finite rank, as follows:

0 −−−→ C2
∂2−−−→ C1

∂1−−−→ C0 −−−→ 0
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where C0 is the free Z-module on the vertices of G, C1 is the free Z-module on the

edges of G, and C2 is the free Z-module on the faces of G. If "e = (vi, vj) ∈ C1 (where

our convention is that "e is oriented from vi to vj), then ∂1("e) = vj − vi. Similarly,

if f ∈ C2, we define ∂2(f) to be the sum of the edges on the boundary of f with

coefficient +1 if the orientation of the edge agrees with the induced orientation of f

and coefficient −1 if it disagrees. When a particular ordered basis is important, we

will denote the complex as CB[G], with B0, B1, and B2 as the bases of C0, C1, and C2,

respectively.

From C[G], we also construct its dual C∗[G], which has modules C∗
i = Hom(Ci, Z)

and coboundary maps δi : C∗
i → C∗

i+1. The dual complex is shown in the following

diagram.

0 ←−−− C∗
2

δ1←−−− C∗
1

δ0←−−− C∗
0 ←−−− 0

A bilinear form 〈 , 〉 on C1 is a mapping C1 × C1 → Z that is linear in each

variable. That is,

〈cx + y, z〉 = c〈x, z〉 + 〈y, z〉

〈x, cy + z〉 = c〈x, y〉 + 〈x, z〉.

We say that 〈 , 〉 is symmetric if 〈x, y〉 = 〈y, x〉. The matrix of 〈 , 〉 is A = (〈ei, ej〉),
where {ei} is an ordered basis. (Note that a change of basis corresponds to congruence

of A, i.e., A +−→ P tAP , where P{ei} = {ei}.) If A has integer entries, we call 〈 , 〉
unimodular if det A = ±1. (When the entries come from another ring, we require

that det A be a unit.) Equivalently, 〈 , 〉 is unimodular if the adjoint

Ad〈 , 〉 : C1 −→ Hom(C1, Z) ∼= C∗
1

e +−→ (f +→ 〈e, f〉1)
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is an isomorphism.

Example 4.2. For C[G], there are two common symmetric bilinear forms that we

wish to consider on C1.

a. The standard “dot product” on C1 is defined by declaring the edges with chosen

orientation {"ei} to be an orthonormal basis. Then

〈"ei,"ej〉1 = δij ,

where δij is the Kronecker delta.

b. If G is a signed graph, we set

〈"ei,"ej〉1,ε = sign("ei)δij .

Note that the matrices of both these products are diagonal with all entries

±1, making them unimodular. Therefore Ad〈 , 〉1(,ε) is an isomorphism, and we have

proved the following lemma.

Lemma 4.3. As Z-modules, C1 and C∗
1 are isomorphic.

While the adjoint specifies an identification between C1 and C∗
1 , it is by no

means a canonical isomorphism.

Definition 4.4. Given a signed plane digraph G ⊂ S2, the dual signed plane digraph

of G (denoted Ĝ) is constructed by

a. choosing a vertex set V̂ = {v̂1, v̂2, . . . , v̂r} for Ĝ in one-to-one correspondence

with F ;

b. choosing a face set F̂ = (f̂1, f̂2, . . . , f̂n) in one-to-one correspondence with V ;
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c. putting the edge set Ê of Ĝ in one-to-one correspondence with E such that

an edge ê ∈ Ê has the opposite sign of the corresponding edge e ∈ E and is

oriented from the vertex corresponding to the face whose orientation disagrees

with that of e to the vertex corresponding to the face whose orientation agrees

with that of e.

Note that the chain complex of the dual of G is (with reordering) the dual of

the chain complex of G (i.e., C[Ĝ] ∼= C∗[G]).

Notation. We let εi denote 〈ei, ei〉ε for ei ∈ C1 and ε∗i denote 〈e∗i , e∗i 〉ε for e∗i ∈ C∗
1 .

(Notice that, since the dual modules correspond to the edge sets of dual signed graphs,

ε∗i = −εi.)

4.2. Laplacians

Now we define the Laplacians both of a graph and of a chain complex, and then

show the connections between the two of them.

Definition 4.5. The Laplacian matrix L0(G) of a graph G is

L0(G) = D(G) − A(G),

where D(G) = diag(dG(v1), dG(v2), . . . , dG(vn)), the diagonal matrix of vertex degrees

and A(G) is the adjacency matrix of the graph G. The signed Laplacian matrix of a

graph is

Lε(G) =
∑

e∈E(G)

∂e={i,j}

εij(Eii − Eij − Eji + Ejj),

where Est is the n×n matrix with exactly one nonzero entry in position (s, t) and εij

is +1 or −1, depending on the sign of the edge in question. (Note that the reference

to G will be omitted when the context is clear.)
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For the dual graph Ĝ, we will denote Lε(Ĝ) by L̂ε.

Since we have defined a chain complex corresponding to a graph, we consider

now its combinatorial Laplacians and then show their relations to the graph Lapla-

cians of definition 4.5.

Definition 4.6. Given a chain complex C = {Ci, ∂i} where each module is endowed

with a bilinear form that makes its basis orthonormal, its combinatorial Laplacians

∆i : Ci → Ci are

∆i = (Ad〈 , 〉i)−1δi−1 Ad〈 , 〉i−1∂i + ∂i+1(Ad〈 , 〉i+1)
−1δi Ad〈 , 〉i

If we use Ad〈 , 〉1,ε to identify C1 and C∗
1 , we write ∆i,ε.

Lemma 4.7. Let G be a signed graph (with fixed but arbitrary edge orientation)

embedded in S2 and with corresponding chain complex C[G]. Then

a. ∆0 = ∂1(Ad〈 , 〉1)−1δ0 Ad〈 , 〉0 = L0(G),

b. ∆0,ε = ∂1(Ad〈 , 〉1,ε)−1δ0 Ad〈 , 〉0 = Lε(G),

c. ∆2,ε = Ad〈 , 〉2δ2 Ad〈 , 〉1,ε∂1 = L̂ε(G).

Proof. As a matrix, ∂1 is a rank C0 × rank C1 matrix with rows corresponding to the

vertices of G and columns corresponding to the edges of G, so it has a +1 and a −1

in every column, and δ0 = ∂t
1. We commonly refer to ∂1 as the oriented vertex-edge

incidence matrix of G. Similarly, δ1 is the oriented vertex-edge incidence matrix of

Ĝ, and ∂2 = δt
1.

Since Ad〈 , 〉i is simply represented by the identity matrix, we can see that the

first statement is proved in [2, p. 27]. Let Q = ∂1(Ad〈 , 〉1,ε)−1δ0 Ad〈 , 〉0 and denote

its ij-th entry by qij . First consider a diagonal entry qii. It is the inner product of

row i of ∂1 with column i in (Ad〈 , 〉1,ε)−1δ0. These two vectors have nonzero entries
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in the same locations, since they correspond to the same vertex and Ad〈 , 〉1,ε only

multiplies entries by ±1. Then for all j, 1 ≤ j ≤ m, we have three possibilities. First,

the j-th entry is zero, and contributes nothing to qii. Second, εj = +1, so j-th entries

of the vectors are both either +1 or −1, and 1 is added to qii. Finally, εj = −1, so

one of the vectors has +1 as its j-th entry and the other has −1, meaning that −1 is

added to qii. Therefore qii =
∑m

j=1 εj.

Next consider an off-diagonal entry qij of Q, which is the inner product of row

i of ∂1 and column j of δ0. This row-column pair corresponds to different vertices,

so the vectors only have non-zero entries in the k-th position if vi and vj are the

endpoints of ek. If εk = +1 (i.e., ek is a positive edge), then one of the vectors has

a +1 in the k-th position and the other has a −1. Therefore, −1 is added to qij. If

εk = −1 (i.e., ek is a negative edge), then both vectors have either a +1 or a −1 in

the k-th position. Hence, +1 is added to qij . Thus qij =
∑

(−εk), where the sum is

taken over all edges between vi and vj. This matches with the definition of Lε(G).

The third statement is proved in the same manner as the second.

Much attention has been given to L0(G) and (to a lesser degree) Lε(G). Despite

this interest, the literature contains very little about ∆1. Two major reasons for this

are that graphs with fixed plane embeddings have been little studied and that the one-

Laplacian involves a non-canonical choice of edge orientation. However, the following

lemma can easily be proven.

Lemma 4.8. Let G be a bipartite graph with n vertices and m edges with bipartition

V1 and V2. Choose an orientation such that the edges of G are all directed from V1 to

V2.

a. Then in C[G], we have (Ad〈 , 〉1)−1δ0 Ad〈 , 〉0∂1 = 2Im + A(G#), where A(G#)

is the adjacency matrix of the line graph of G.
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b. If G is planar, we also have ∂2(Ad〈 , 〉2)−1δ1 Ad〈 , 〉1 = 2Im + A(Ĝ#).

4.3. Goeritz Equivalence

In [9], Goeritz introduced the following equivalence relation on bilinear forms.

Definition 4.9. Let B1 and B2 be two bilinear forms on finitely generated free Z-

modules M1 and M2, respectively. Then B1 is Goeritz equivalent to B2 (denoted

B1 ∼G B2) if (M1, B1 ⊕D1) is isomorphic to (M2, B2 ⊕D2), where the Di forms have

a basis in which the form is diagonal with entries in {0,±1}.

Here we define a second, slightly stronger relation as well.

Definition 4.10. Let B1 and B2 be two bilinear forms on finitely generated free Z-

modules M1 and M2, respectively. Then B1 is super-Goeritz equivalent to B2 (denoted

B1 ∼SG B2) if (M1, B1 ⊕ D1) is isomorphic to (M2, B2 ⊕ D2), where the Di forms

have a basis in which the form is diagonal with entries in {±1}.

While the Laplacians are usually thought of as automorphisms or operators, we

can use them to define bilinear forms on the modules of the chain complex corre-

sponding to a graph.

Definition 4.11. Let C[G] be the chain complex corresponding a signed plane graph

G. For each module Ci, define Bi,ε(x, y) to be 〈x, ∆i,εy〉i,ε for vectors x and y.

The following theorem is equivalent to the theorem Lien and Watkins proved

in [14]. Here we have stated the theorem in terms of bilinear forms instead of using

matrix terminology.

Theorem 4.12. Let G be a signed plane graph with chain complex C[G]. Then

(C2, B2,ε) ∼G (C0, B0,ε).

Before proceeding, we need to define an idea from module theory and prove two

statements about it.
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Definition 4.13. Let M be a finitely-generated free Z-module with bilinear form B.

Then the left radical of B, denoted RadB, is

{u ∈ M | B(u, M) = {0}} .

Note that Rad B = {0} if and only if Ad B is injective. Also, a vector "r is in

the radical of a form with matrix B if and only if "r · B = "0.

Lemma 4.14. Let M and N be finitely-generated free Z-modules and let

Φ : (M, BM) → (N, BN)

be an isomorphism of modules with a bilinear form. Then

(M/ RadBM , B′
M) ∼= (N/ RadBN , B′

N),

where B′
M(x, y) = BM(x, y) is well-defined by the definition of the radical.

Proof. First note that Φ preserves the bilinear form, and thus Φ maps Rad BM to

RadBN . Let

Φ : (M/ RadBM , B′
M) → (N/ RadBN , B′

N).

We claim that Φ is an isomorphism. First, to check that Φ is well-defined, we must

show that Φ(m) − Φ(m + r) ∈ RadBN when r ∈ RadBM . We have that

BN(Φ(m) − Φ(m + r), n) = BN(Φ(m) − Φ(m) − Φ(r), Φ(m′))

= −BN(Φ(r), Φ(m′))

= −BM(r, m′)

= 0,
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since r ∈ Rad BM . Hence Φ(m) − Φ(m + r) ∈ RadBN , and Φ is well-defined.

Next we check that Φ is injective. Let x, y ∈ M/ RadBM and suppose that

Φ(x) = Φ(y). Then Φ(x)−Φ(y) = 0, so Φ(x)−Φ(y) ∈ RadBN . Let z = Φ(x)−Φ(y)

and set z = Φ(w), w ∈ M , since Φ is an isomorphism. Since Φ preserves radicals, we

must have that w ∈ Rad BM . Now observe that

Φ(x) − Φ(y) − Φ(w) = 0

⇒Φ(x − y − w) = 0

⇒x − y − w = 0

⇒x − w = y

⇒x = y,

since w ∈ Rad BM .

Finally we check that Φ is surjective. Let n be an arbitrary equivalence class in

N/ RadBN . Then members of n are of the form n + r, r ∈ RadBN . Using Φ−1, we

have

Φ−1(n + r) = Φ−1(n) + Φ−1(r) = m + r′,

for some m, r′ ∈ M . However, r′ must be in Rad BM , since Φ preserves radicals.

Hence m + r′ ∈ M/ RadBM as required. Therefore Φ is an isomorphism.

Lemma 4.15. The radical respects the direct sum. That is, if Bi and Di are bilinear

forms,

Rad(Bi ⊕ Di) = Rad(Bi) ⊕ Rad(Di).

Proof. Let M =
(

Bi O
O Di

)
be the matrix of Bi⊕Di and let us assume that Bi is an n×n

matrix and Di is an m×m matrix. Let "s = (r1, . . . , rn) and "t = (rn+1, . . . , rn+m) and

consider "r = "s⊕"t ∈ Rad(Ci ⊕Di). Then "r ·M is necessarily "0. The first n entries of
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"r ·M depend only on "s and Bi, so "s ·Bi = "0. Hence "s ∈ Rad(Bi). The last m entries of

"r ·M depend similarly only on "t and Di, meaning that "t ·Di = "0. Thus "t ∈ Rad(Di).

Therefore an element of Rad(Bi ⊕Di) is formed from an element of Rad(Bi) and an

element of Rad(Di). Reversing the argument proves the opposite inclusion.

Now we are in a position to state and prove the following theorem.

Theorem 4.16. If G is a signed plane graph with chain complex C[G], then

(C2/ RadB2,ε, B
′
2,ε) ∼SG (C0/ RadB0,ε, B

′
0,ε),

where the B′
i,ε’s are bilinear forms on the quotient modules.

Proof. By theorem 4.12, (C2, B2,ε) ∼G (C0, B0,ε). That is, there exist (0,±1)-diagonal

forms D2, D0 with

B2,ε ⊕ D2
∼= B0,ε ⊕ D0.

Lemma 4.14 implies that

(B2,ε ⊕ D2)/ Rad(B2,ε ⊕ D2) ∼= (B0,ε ⊕ D0)/ Rad(B0,ε ⊕ D0).

By lemma 4.15, we have Rad(Bi⊕Di) = Rad(Bi)⊕Rad(Di). Now D′
i
∼= Di/ Rad(Di)

is a (±1)-diagonal form. Hence

(Bi ⊕ Di)/ Rad(Bi ⊕ Di) ∼= Bi/ Rad(Bi) ⊕ Di/ Rad(Di)

∼= Bi/ Rad(Bi) ⊕ D′
i.

Therefore the conclusion on super-Goeritz equivalence holds.
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Figure 15. One diagram of the knot 820.
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Figure 16. Labelled
version of M(820).

4.4. Example

Consider the knot 820, which is illustrated with its medial graph in figure 15.

Let G = M(820) as labelled in figure 16.

Now we can construct C[G] and examine its boundary maps.

∂2 =




−1 1 0 0 0

−1 0 1 0 0

0 0 1 −1 0

0 1 −1 0 0

0 1 0 0 −1

0 0 0 −1 1

−1 0 0 1 0

−1 1 0 0 0




= δt
1
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∂1 =




1 0 0 0 0 0 0 −1

−1 1 0 1 0 0 0 0

0 −1 1 0 0 0 1 0

0 0 0 0 −1 −1 −1 1

0 0 −1 −1 1 1 0 0




= δt
0

Using the formulas of lemma 4.7, we can easily compute the following Lapla-

cians.

L0 =




2 −1 0 −1 0

−1 3 −1 0 −1

0 −1 3 −1 −1

−1 0 −1 4 −2

0 −1 −1 −2 4




, Lε =




−2 1 0 1 0

1 1 −1 0 −1

0 −1 1 1 −1

1 0 1 −4 2

0 −1 −1 2 0




L̂ε =




2 −2 1 −1 0

−2 2 1 0 −1

1 1 −3 1 0

−1 0 1 1 −1

0 −1 0 −1 2




,

It is clear that the vector (1, 1, 1, 1, 1) spans the radical of L0, Lε,and L̂ε. Finally,

we compute ∆1 and ∆1,ε. Notice that ∆1,ε is not a symmetric matrix. The loss of

symmetry between entries aij and aji occurs if "ei and "ej are nonadjacent edges with

opposite signs. Then aij = −aji. However, we note that ∆1,ε is a self-adjoint matrix

with respect to the form 〈 , 〉1,ε; that is, 〈x, ∆1,ε(y)〉1,ε = 〈∆1,ε(x), y〉1,ε. Considering
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matrices, this is simply B1,ε∆1,ε = ∆t
1,εB1,ε.

∆1 =




4 0 0 0 1 0 1 1

0 4 0 0 0 0 0 1

0 0 4 0 −1 0 0 0

0 0 0 4 0 −1 0 1

1 0 −1 0 4 1 1 0

0 0 0 −1 1 4 0 −1

1 0 0 0 1 0 4 0

1 1 0 1 0 −1 0 4




∆1,ε =




0 0 0 0 1 0 1 3

0 0 −2 2 0 0 0 1

0 −2 0 2 −1 0 0 0

0 2 2 0 0 −1 0 1

1 0 1 0 0 −3 −1 2

0 0 0 1 −3 0 −2 1

1 0 0 0 −1 −2 0 2

3 −1 0 −1 2 1 2 0




4.5. Further Problems and Questions

The preparation of this paper has lead to many more questions than it has

answered, and some of the more prominent ones are included below.

Question 1. Is the super-Goeritz class of (C1, B1,ε) preserved under Reidemeister

moves?

We expect the answer to question 1 to be “yes,” since the work of Goeritz

[9] and Kneser and Puppe [12] showed that the super-Goeritz classes of (C0, B0,ε)
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and (C2, B2,ε) of knot diagrams are preserved under Reidemeister moves. Kyle [13]

noticed that only Goeritz equivalence is preserved under Reidemeister moves on link

diagrams.

Question 2. Study the relationship between (C1, B1,ε) and

(C2/ RadB2,ε, B
′
2,ε) ⊕ (C0/ RadB0,ε, B

′
0,ε).

Note that the Laplacian of the one-chains has no radical. In Appendix 4.6, we

show that, if we extend to rational coefficients for the one-chains, there is a duality

with the one-cochains and a basis of the rational vector space of one-chains for which

the associated Laplacian is a direct sum.

Question 3. Which based chain complexes arise from link diagrams?

This is such a simple question, but it is unlikely that it has a simple answer.

An answer to this question will be a set of necessary and sufficient conditions for a

chain complex to represent a plane graph.

The zero-Laplacian contains information on the critical group of a graph. This

finite abelian group (defined in [1]) of order equal to the determinant of a principal

submatrix of the zero-Laplacian formed by deleting a single row and corresponding

column. This is the knot invariant discovered by Goeritz. A potential problem is to

study the analogous critical group on the one-chain group C1(G).

4.6. Rational One-Laplacian

The ordered edge set is not the only possible basis for C1, and considering an

alternative basis puts ∆1 into a nicer form. However, we must extend the coefficients

to include the rational numbers, making C[G] a chain complex of vector spaces over

Q, and choose yet a third duality isomorphism between C1 and C∗
1 .
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Definition 4.17. Let G be a graph with chain complex C[G]. The rational face-star

basis for C1 is the ordered basis

B′
1 = (∂2(f1), ∂2(f2), . . . , ∂2(fr−1), δ0(v1), δ0(v2), . . . , δ0(vn−1)).

Letting B′
0 and B′

2 be the standard vertex and face bases allows us to denote this

modified complex by CB′ [G].

Using the rational face-star basis, the map ∂2 takes the form




1 0 · · · 0 −1

0 1 0 −1

...
...

. . .
...

...

0 0 · · · 1 −1

0 0 · · · 0 0

...
...

...
...

0 0 · · · 0 0




,

since the first r − 1 fi’s now map to basis elements and ∂2(fr) can be expressed as

(−1)
∑r−1

i=1 ∂2(fi) because
∑

fi is a 2-cycle representing the generator of H2(S2) ∼= Z.

Since the image of ∂2 is the kernel of ∂1, we also see that ∂1 takes the form




0 · · · 0

...
... M

0 · · · 0


 ,

where M is an n × (n − 1) matrix.

The third duality isomorphism is defined by declaring the rational face-star basis

to be an orthonormal basis for C1 and using that fact to identify C1 and C∗
1 , it is
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clear that (Ad〈 , 〉1)−1δ0 Ad〈 , 〉0∂1 is an m × m matrix with all entries 0 except for

the (n−1)× (n−1) submatrix in the lower right corner, and ∂2(Ad〈 , 〉2)−1δ1 Ad〈 , 〉1
is an m×m matrix with all entries 0 except for the (r−1)× (r−1) submatrix in the

upper left corner. Therefore, ∆1 is in block form for this choice of orthonormal basis.
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