Skip to main content \(\newcommand{\set}[1]{\{1,2,\dotsc,#1\,\}}
\newcommand{\ints}{\mathbb{Z}}
\newcommand{\posints}{\mathbb{N}}
\newcommand{\rats}{\mathbb{Q}}
\newcommand{\reals}{\mathbb{R}}
\newcommand{\complexes}{\mathbb{C}}
\newcommand{\twospace}{\mathbb{R}^2}
\newcommand{\threepace}{\mathbb{R}^3}
\newcommand{\dspace}{\mathbb{R}^d}
\newcommand{\nni}{\mathbb{N}_0}
\newcommand{\nonnegints}{\mathbb{N}_0}
\newcommand{\dom}{\operatorname{dom}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\prob}{\operatorname{prob}}
\newcommand{\Prob}{\operatorname{Prob}}
\newcommand{\height}{\operatorname{height}}
\newcommand{\width}{\operatorname{width}}
\newcommand{\length}{\operatorname{length}}
\newcommand{\crit}{\operatorname{crit}}
\newcommand{\inc}{\operatorname{inc}}
\newcommand{\HP}{\mathbf{H_P}}
\newcommand{\HCP}{\mathbf{H^c_P}}
\newcommand{\GP}{\mathbf{G_P}}
\newcommand{\GQ}{\mathbf{G_Q}}
\newcommand{\AG}{\mathbf{A_G}}
\newcommand{\GCP}{\mathbf{G^c_P}}
\newcommand{\PXP}{\mathbf{P}=(X,P)}
\newcommand{\QYQ}{\mathbf{Q}=(Y,Q)}
\newcommand{\GVE}{\mathbf{G}=(V,E)}
\newcommand{\HWF}{\mathbf{H}=(W,F)}
\newcommand{\bfC}{\mathbf{C}}
\newcommand{\bfG}{\mathbf{G}}
\newcommand{\bfH}{\mathbf{H}}
\newcommand{\bfF}{\mathbf{F}}
\newcommand{\bfI}{\mathbf{I}}
\newcommand{\bfK}{\mathbf{K}}
\newcommand{\bfP}{\mathbf{P}}
\newcommand{\bfQ}{\mathbf{Q}}
\newcommand{\bfR}{\mathbf{R}}
\newcommand{\bfS}{\mathbf{S}}
\newcommand{\bfT}{\mathbf{T}}
\newcommand{\bfNP}{\mathbf{NP}}
\newcommand{\bftwo}{\mathbf{2}}
\newcommand{\cgA}{\mathcal{A}}
\newcommand{\cgB}{\mathcal{B}}
\newcommand{\cgC}{\mathcal{C}}
\newcommand{\cgD}{\mathcal{D}}
\newcommand{\cgE}{\mathcal{E}}
\newcommand{\cgF}{\mathcal{F}}
\newcommand{\cgG}{\mathcal{G}}
\newcommand{\cgM}{\mathcal{M}}
\newcommand{\cgN}{\mathcal{N}}
\newcommand{\cgP}{\mathcal{P}}
\newcommand{\cgR}{\mathcal{R}}
\newcommand{\cgS}{\mathcal{S}}
\newcommand{\bfn}{\mathbf{n}}
\newcommand{\bfm}{\mathbf{m}}
\newcommand{\bfk}{\mathbf{k}}
\newcommand{\bfs}{\mathbf{s}}
\newcommand{\bijection}{\xrightarrow[\text{onto}]{\text{$1$--$1$}}}
\newcommand{\injection}{\xrightarrow[]{\text{$1$--$1$}}}
\newcommand{\surjection}{\xrightarrow[\text{onto}]{}}
\newcommand{\nin}{\not\in}
\newcommand{\prufer}{\text{prüfer}}
\DeclareMathOperator{\fix}{fix}
\DeclareMathOperator{\stab}{stab}
\DeclareMathOperator{\var}{var}
\newcommand{\inv}{^{-1}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section B.9 Exponentiation
We now define a binary operation called
exponentiation which is defined only on those ordered pairs
\((m,n)\) of natural numbers where not both are zero. The notation for exponentiation is non-standard. In books, it is written
\(m^n\) while the notations
\(m**n\text{,}\) \(m\wedge n\) and
\(\exp(m,n)\) are used in-line. We will use the
\(m^n\) notation for the most part.
When
\(m=0\text{,}\) we set
\(0^n=0\) for all
\(n\in\nonnegints\) with
\(n\neq0\text{.}\) Now let
\(m\neq0\text{.}\) We define
\(m^n\) by (i)
\(m^0=1\) and (ii)
\(m^{k+1}=mm^k\text{.}\)
Theorem B.27 .
For all
\(m,n,p\in\nonnegints\) with
\(m\neq0\text{,}\) \(m^{n+p}=m^n\,m^p\text{.}\)
Proof.
Let \(m,n\in\nonnegints\) with \(m\neq0\text{.}\) Then \(m^{n+0}=m^n=m^n\,1=m^n\,m^0\text{.}\) Now suppose that \(m^{n+k}=m^n\,m^k\text{.}\) Then
\begin{equation*}
m^{n+(k+1)}=m^{(n+k)+1}=m\,m^{n+k}
= m(m^n\,m^k)=m^n(m\,m^k)=m^n\,m^{k+1}.
\end{equation*}
Theorem B.28 .
For all
\(m,n,p\in\nonnegints\) with
\(m\neq0\text{,}\) \((m^n)^p=m^{np}\text{.}\)
Proof.
Let \(m,n\in\nonnegints\) with \(m\neq0\text{.}\) Then \((m^n)^0=1=m^0=m^{n0}\text{.}\) Now suppose that \((m^n)^k=m^{nk}\text{.}\) Then
\begin{equation*}
(m^n)^{k+1}=m^n(m^n)^k=m^n(m^{nk})=m^{n+nk}=m^{n(k+1)}.
\end{equation*}