Example 2.1.
In the state of Georgia, license plates consist of four digits followed by a space followed by three capital letters. The first digit cannot be a \(0\text{.}\) How many license plates are possible?
Solution.
Let \(X\) consist of the digits \(\{0,1,2,\dots,9\}\text{,}\) let \(Y\) be the singleton set whose only element is a space, and let \(Z\) denote the set of capital letters. A valid license plate is just a string from
\begin{equation*}
(X-\{0\})\times X\times X\times X\times Y\times Z\times Z\times Z
\end{equation*}
so the number of different license plates is \(9\times10^3\times1\times
26^3=158\,184\,000\text{,}\) since the size of a product of sets is the product of the sets’ sizes. We can get a feel for why this is the case by focusing just on the digit part of the string here. We can think about the digits portion as being four blanks that need to be filled. The first blank has \(9\) options (the digits \(1\) through \(9\)). If we focus on just the digit strings beginning with \(1\text{,}\) one perspective is that they range from \(1000\) to \(1999\text{,}\) so there are \(1000\) of them. However, we could also think about there being \(10\) options for the second spot, \(10\) options for the third spot, and \(10\) options for the fourth. Multiplying \(10\times 10\times 10\) gives \(1000\text{.}\) Since our analysis of filling the remaining digit blanks didn’t depend on our choice of a \(1\) for the first position, we see that each of the \(9\) choices of initial digit gives \(1\, 000\) strings, for a total of \(9\,000 = 9\times 10^3\text{.}\)