Example 3.3.
A family of \(n\) lines is drawn in the plane with (1) each pair of lines crossing and (2) no three lines crossing in the same point. Let \(r(n)\) denote the number of regions into which the plane is partitioned by these lines. Evidently, \(r(1)=2\text{,}\) \(r(2)=4\text{,}\) \(r(3)=7\) and \(r(4)=11\text{.}\) To determine \(r(n)\) for all positive integers, it is enough to note that \(r(1)=2\text{,}\) and when \(n>1\text{,}\) \(r(n)=n+r(n-1)\text{.}\) This formula follows from the observation that if we label the lines as \(L_1\text{,}\) \(L_2, \dots, L_n\text{,}\) then the \(n-1\) points on line \(L_n\) where it crosses the other lines in the family divide \(L_n\) into \(n\) segments, two of which are infinite. Each of these segments is associated with a region determined by the first \(n-1\) lines that has now been subdivided into two, giving us \(n\) more regions than were determined by \(n-1\) lines. This situation is illustrated in Figure 3.4, where the line containing the three dots is \(L_4\text{.}\) The other lines divide it into four segments, which then divide larger regions to create regions \(1\) and \(5\text{,}\) \(2\) and \(6\text{,}\) \(7\) and \(8\text{,}\) and \(4\) and \(9\text{.}\)
With the recursive formula, we thus have \(r(5)=5+11=16\text{,}\) \(r(6)=6+16=22\) and \(r(7)=7+22=29\text{.}\) Even by hand, it wouldn’t be all that much trouble to calculate \(r(100)\text{.}\) We could do it before lunch.